
Preparing your Data for SEM Estimation
Basic Steps

Lilian Kojan and André Calero Valdez

updated: 2021-07-14

Data preparation
1. Data requirements
2. Recoding variables
3. Treating missing values
4. Renaming variables

2 / 29

Data preparation steps
Basic steps:

Recoding variables
Treating missing data
Renaming variables

Advanced steps:

Examining data distribution
Removing low quality responses
Treating outliers

3 / 29

Example data
Quality

Expectation
Expectation
Products

Problem
Expectation

Satisfaction
Overall

Expectation
Fulfillment

7 rather agree 5 6 NA
10 strongly agree 2 10 10
7 rather agree 4 8 7
7 strongly agree 6 10 NA
8 rather agree 1 10 8

10 agree 4 8 NA

4 / 29

Recoding variables: Numerical
Quality

Expectation
Expectation
Products

Problem
Expectation

Satisfaction
Overall

Expectation
Fulfillment

7 rather agree 5 6 NA
10 strongly agree 2 10 10
7 rather agree 4 8 7
7 strongly agree 6 10 NA
8 rather agree 1 10 8

10 agree 4 8 NA

5 / 29

Recoding variables: Data type
Data should be

numerical

But also...

6 / 29

Recoding variables: Data type
Data should be

numerical

But also...

... approximately equidistant

strongly
disagree disagree neither agree

nor disagree
rather
agree

strongly
agree

1 2 3 4 5

6 / 29

Recoding variables: Data type
Data should be

numerical

But also...

... approximately equidistant (i.e., not scaled like this)

strongly
disagree agree strongly

agree

1 2 3 4 5

neither agree
nor disagree

rather
agree

7 / 29

Recoding variables: Data type
Data should be

numerical
ordinal scaled
and the scale should be approximately equidistant

8 / 29

Recoding variables: Data type
Quality

Expectation
Expectation
Products

Problem
Expectation

Satisfaction
Overall

Expectation
Fulfillment

7 rather agree 5 6 NA
10 strongly agree 2 10 10
7 rather agree 4 8 7
7 strongly agree 6 10 NA
8 rather agree 1 10 8

10 agree 4 8 NA

9 / 29

Recoding variables: Data type
df <- df %>% # assign changes to existing data frame
 dplyr::mutate(# add new variable based on existing one
 `Expectation Products` = # name for the new variable
 dplyr::recode(# replace values
 `Expectation Products`, # variable to replace values in
 "rather agree" = 7, # old value = new value
 "agree" = 9,
 "strongly agree" = 10
)
)
because we gave the new variable the same name,
it replaces the old variable

use mutate(across(v1:v3), fnc) to recode variables v1 to v3 using fnc

10 / 29

Recoding variables: Data type
Quality

Expectation
Expectation

Products
Problem

Expectation
Satisfaction

Overall
Expectation
Fulfillment

7 7 5 6 NA
10 10 2 10 10
7 7 4 8 7
7 10 6 10 NA
8 7 1 10 8

10 9 4 8 NA

11 / 29

Recoding variables: Direction
Quality

Expectation
Expectation

Products
Problem

Expectation
Satisfaction

Overall
Expectation
Fulfillment

7 7 5 6 NA
10 10 2 10 10
7 7 4 8 7
7 10 6 10 NA
8 7 1 10 8

10 9 4 8 NA

12 / 29

Recoding variables: Direction
Expectation Satisfaction

Quality
Expectation

Expectation
Products

Problem
Expectation

Satisfaction
Overall

Expectation
Fulfillment

7 7 5 6 NA
10 10 2 10 10
7 7 4 8 7
7 10 6 10 NA
8 7 1 10 8

10 9 4 8 NA

13 / 29

Recoding variables: Direction
df <- df %>% # assign changes to existing data frame
 mutate(# add new variable based on existing variables
 `Expectation Products` = # name for the new variable
 dplyr::recode(# replace values
 `1` = 10, # old value = new value
 `2` = 9,
 `3` = 8,
 `4` = 7,
 `5` = 6,
 `6` = 5,
 `7` = 4,
 `8` = 3,
 `9` = 2,
 `10` = 1
)
)

14 / 29

Recoding variables: Direction
Quicker option:

Reverse scale using mutate() with substraction:
For a scale ranging from 1 to x: x + 1 - scale
For a scale ranging from 0 to x: x - scale
df <- df %>%
 mutate(
 `Problem Expectation` = 11 - `Problem Expectation`
)

15 / 29

Recoding variables: Direction
Expectation Satisfaction

Quality
Expectation

Expectation
Products

Problem
Expectation

Satisfaction
Overall

Expectation
Fulfillment

7 7 6 6 NA
10 10 9 10 10
7 7 7 8 7
7 10 5 10 NA
8 7 10 10 8

10 9 7 8 NA

16 / 29

Treating missing values
Expectation Satisfaction

Quality
Expectation

Expectation
Products

Problem
Expectation

Satisfaction
Overall

Expectation
Fulfillment

7 7 6 6 NA
10 10 9 10 10
7 7 7 8 7
7 10 5 10 NA
8 7 10 10 8

10 9 7 8 NA

17 / 29

Treating missing values
Expectation Satisfaction

Quality
Expectation

Expectation
Products

Problem
Expectation

Satisfaction
Overall

Expectation
Fulfillment

7 7 6 6 NA
10 10 9 10 10
7 7 7 8 7
7 10 5 10 NA
8 7 10 10 8

10 9 7 8 NA

18 / 29

Treating missing values
Expectation Satisfaction

Quality
Expectation

Expectation
Products

Problem
Expectation

Satisfaction
Overall

Expectation
Fulfillment

7 7 6 6 8
10 10 9 10 10
7 7 7 8 7
7 10 5 10 8
8 7 10 10 8

10 9 7 8 8

19 / 29

Treating missing values
Expectation Satisfaction

Quality
Expectation

Expectation
Products

Problem
Expectation

Satisfaction
Overall

Expectation
Fulfillment

7 7 6 6 NA
10 10 9 10 10
7 7 7 8 7
7 10 5 10 NA
8 7 10 10 8

10 9 7 8 NA

20 / 29

Treating missing values
Impute missing data
Remove variables containing missing data (Hair et al., 2017)
Ignore missing data

21 / 29

Treating missing values
Impute missing data
Remove variables containing missing data (Hair et al., 2017)
Ignore missing data

remove variable with missing data
df <- df %>%
 select(!'Expectation Fulfillment')

21 / 29

Renaming variables
Expectation Satisfaction

Quality Expectation Expectation Products Problem Expectation Satisfaction Overall
7 7 6 6

10 10 9 10
7 7 7 8
7 10 5 10
8 7 10 10

10 9 7 8

22 / 29

Long variable names...

Renaming variables

23 / 29

Long variable names... ... vs. abbreviated names

Renaming variables

23 / 29

Renaming variables
Long variable names...

measurement_model <- constructs(# define measurement model
 reflective(# define a reflective construct
 construct_name = "Expectation", # construct name
 item_names = c(# item names = df variable names
 "Quality Expectation",
 "Expectation Products",
 "Problem Expectation"
)
),
 reflective(
 construct_name = "Satisfaction",
 item_names = c("Expectation Fulfillment")
)
)

24 / 29

Renaming variables
... vs. abbreviated names

measurement_model <- constructs(
 reflective(
 construct_name = "Expectation",
 item_names = multi_items("CUEX", 1:3) # calls variables with same prefix
),
 reflective(construct_name = "Satisfaction",
 item_names = "CUSA1")
)

25 / 29

Renaming variables
... vs. abbreviated names

measurement_model <- constructs(
 reflective(
 construct_name = "Expectation",
 item_names = multi_items("CUEX", 1:3)
),
 reflective(construct_name = "Satisfaction",
 item_names = "CUSA1")
)

26 / 29

Renaming variables
Rename variables associated with the same construct with the same prefix, e.g. for CUSA for
Customer Satisfaction

df <- df %>%
 rename("CUSA1" = "Satisfaction Overall") # new name = old name

27 / 29

Renaming variables
Rename variables associated with the same construct with the same prefix, e.g. for CUSA for
Customer Satisfaction

df <- df %>%
 rename("CUSA1" = "Satisfaction Overall") # new name = old name

df <- df %>%
 rename_with(~ paste0("CUEX", 1:3), # function to generate new name
 .cols = c(1:3)) # apply to columns 1 to 3

27 / 29

Summary
CUEX1 CUEX2 CUEX3 CUSA1

7 7 6 6
10 10 9 10
7 7 7 8
7 10 5 10
8 7 10 10

10 9 7 8

Data is numerical and unidirectional
There are no missing values
Variables are named for use in SEMinR

28 / 29

Sources for this video
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares
structural equation modeling (PLS-SEM) (Second edition). Sage.

29 / 29

